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1    Introduction 
Feature and pattern detection in images is a classical 
computer vision problem with many potential applica- 
tions, ranging from automatic target recognition to in- 
dustrial inspection tasks in assembly lines. While there 
has been some successful pattern detection systems in 
the past, especially those using pictorial templates [4] 
[10] [11] or geometric models [7] for describing objects, 
most such systems are limited by some serious con- 
straints. For example, in some systems, the target ob- 
jects must be rigid or at least made up of rigid parts. In 
others, lighting must be controlled or the imaging geom- 
etry must be known. 

This paper presents a new feature and pattern detec- 
tion technique for finding slightly deformable objects un- 
der reasonable amounts of lighting variation. To demon- 
strate our technique, we focus on the specific problem 
of finding human faces in images. We have developed 
a generic, human face detection system that operates 
successfully under a reasonably wide range of lighting 
conditions and imaging environments. Our system de- 
tects vertically oriented and unoccluded frontal views 
of human faces in grey-level images. It handles faces 
within a range of scales as specified by the user, and 
works under different lighting conditions, even with mod- 
erately strong shadows. We stress that our ultimate 
goal is to propose a general methodology for taking on 
feature detection tasks in multiple domains, including 
hand-printed character recognition, industrial inspec- 
tion, medical image analysis and terrain classification, 
where target patterns may not be rigid or geometrically 
parameterizable, and where imaging conditions may not 
be within the user's control. 

1.1     The Face Detection Problem 
We begin by describing the problem of human face de- 
tection. Given as input an arbitrary image, which could 
be a digitized video signal or a scanned photograph, de- 
termine whether or not there are any human faces in the 
image, and if there are, return an encoding of the loca- 
tion and spatial extent of each human face in the image. 
An example encoding might be to fit each face in the 
image with a bounding box, and return the image co- 
ordinates of the box corners. A related problem to face 
detection is face recognition: given an input image of a 
face, compare the input face against models in a library 
of known faces and report if a match is found. In recent 
years, the face recognition problem has attracted much 
attention because of its many possible applications in 
automatic access control systems and human-computer 
interfaces. 

Why is automatic face detection an interesting prob- 
lem? Applications wise, face detection has direct rele- 
vance to the face recognition problem, because the first 
important step of a fully automatic human face recog- 
nizer is usually one of identifying and locating faces in 
an unknown image. So far, the focus of face recognition 
research has been mainly on distinguishing individual 
faces from others in a database. The' task of finding 
faces in an arbitrary background is usually avoided by 
either hand segmenting the input image, or by capturing 

faces against a known uniform background. 
Face detection also has potential applications in 

human-computer interfaces and surveillance systems. 
For example, a face finder can make workstations with 
cameras more user friendly by turning monitors on and 
keeping them active whenever there is someone in front 
of the terminal. In some security and census systems, 
one could determine the number of people in a scene by 
counting the number of visible human faces. 

From an academic standpoint, face detection is inter- 
esting because faces make up a challenging class of nat- 
urally structured but slightly deformable objects. There 
are many other object classes and phenomena in the real 
world that share similar characteristics, for example dif- 
ferent hand or machine printed instances of the character 
'A', tumor anomalies in MRI scans and material defects 
in industrial products. A successful face detection sys- 
tem can provide valuable insight on how one might ap- 
proach other similar pattern and feature detection prob- 
lems. 

Face detection is difficult for three main reasons. 
First, although most faces are similarly structured with 
the same facial features arranged in roughly the same 
spatial configuration, there can be a large component of 
non-rigidity and textural differences among faces. For 
the most part, these elements of variability are due to 
the basic differences in "facial appearance" between in- 
dividuals — person 'A' has a larger nose than person 
'B', person 'C has eyes that are farther apart than per- 
son 'D', while person 'E' has a darker skin complexion 
than person 'F'. Even between images of the same per- 
son's face, there can still be significant geometrical or 
textural differences due to changes in expression and the 
presence or absence of facial makeup. As such, tradi- 
tional fixed template matching techniques and geomet- 
ric model-based object recognition approaches that work 
well for rigid and articulate objects tend to perform in- 
adequately for detecting faces. 

Second, face detection is also made difficult because 
certain common but significant features, such as glasses 
or a moustache, can either be present or totally absent 
from a face. Furthermore, these features, when present, 
can cloud out other basic facial features (eg. the glare 
in one's glasses may de-emphasize the darkness of one's 
eyes) and have a variable appearance themselves (eg. 
glasses come in many different designs). All this adds 
more variability to the range of permissible face pat- 
terns that a comprehensive face detection system must 
handle. 

Third, face detection can be further complicated by . 
unpredictable imaging conditions in an unconstrained 
environment. Because faces are essentially 3-dimensional 
structures, a change in light source distribution can cast 
or remove significant shadows from a particular face, 
hence bringing about even more variability to 2D facial 
patterns. 
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1.2    Existing work 

As discussed above, the key issue and difficulty in face 
detection is to account for the wide range of allowable fa- 
cial pattern variations in images. There have been three ~ymr 

A 



main approaches for dealing with allowable pattern vari- 
ations, namely: (1) the use of correlation templates, (2) 
deformable templates, and (3) spatial image invariants. 

Correlation Templates Fixed correlation templates 
work like matched filters. They compute a difference 
measurement between a fixed target pattern and candi- 
date image locations, and the output is thresholded for 
matches. 

While the class of all face patterns is probably too var- 
ied to be modeled by fixed correlation templates, there 
are some face detection approaches that use a bank of 
several correlation templates to detect major facial sub- 
features in the image [2] [3]. The assumption here is that 
the degree of non-rigidity in these facial subfeatures is 
small enough to be adequately described by a few fixed 
templates. At a later stage, the technique infers the 
presence of faces by analyzing the spatial relationship 
between the detected subfeatures. 

A closely related approach to correlation templates is 
that of view-based eigen-spaces [12]. The approach as- 
sumes that the set of all possible face patterns occupies 
a small and easily parameterizable sub-space in the origi- 
nal high dimensional input image vector space. To detect 
faces, the approach first recovers a representation of the 
sub-space of face patterns as a reference for matching. 
An image pattern is classified as "a face" if its distance 
from the sub-space of faces is below a certain threshold, 
according to an appropriate distance metric. 

Typically, the approach approximates the sub-space 
of face patterns using clusters and their principal com- 
ponents from one or more sets of face images. Mathe- 
matically, each set of face images is modeled as a cluster 
of points in the original high-dimensional input image 
vector space, and each cluster is characterized by the 
principal components of the distribution of its elements. 
The principal components, or eigenvectors, capture the 
different types of variation that can occur between face 
images in the set, with the largest eigenvectors usually 
corresponding to the key variations types — those due to 
illumination changes and predominant differences in fa- 
cial appearance between individuals. The face sub-space 
is formed using only a subset of the largest eigenvectors 
from each of the clusters, so as to preserve only the se- 
mantically meaningful variations. One commonly used 
distance metric is the Euclidean distance of a pattern 
from the nearest face sub-space location, which may be 
interpreted as a difference measure between the observed 
pattern and some "typical" face pattern [12]. So far, this 
approach has only been demonstrated on images with 
not-so-cluttered backgrounds. 

The view-based eigen-space approach has also been 
used for detecting and locating individual facial sub- 
features. The purpose of these sub-feature detectors has 
mainly been one of registering mugshot faces with model 
faces for recognition, rather than as a preprocessor for 
face detection. 

Deformable Templates Deformable templates are 
similar in principle to classical correlation templates, ex- 
cept that the former has some built-in non-rigidity com- 
ponent. To find faces in an image with a deformable tem-   c 

plate, one essentially fits the template to different parts 
of the image and thresholds the output for matches. 

One deformable template approach uses hand con- 
structed parameterized curves and surfaces to model the 
non-rigid elements of faces and facial subfeatures, such as 
the eyes, nose and lips [20]. The parameterized curves 
and surfaces are fixed elastically to a global template 
frame to allow for minor positional variations between 
facial features. The matching process attempts to align 
the template with one or more pre-processed versions of 
the image, such as the peak, valley and edge maps. An 
energy functional constrains alignment by attracting the 
parameterized curves and surfaces to corresponding im- 
age features, while penalizing deformation "stress" in the 
template. The best fit configuration is found by mini- 
mizing the the energy functional, and the minimum value 
also serves as a closeness measure for the match. 

Image Invariants Image-invariance schemes assume 
that even though faces may vary greatly in appearance 
for a variety of reasons, there are some spatial image re- 
lationships common and possibly unique to all face pat- 
terns. To detect faces, one has to compile such a set of 
image invariants and check for positive occurrences of 
these invariants at all candidate image locations. 

One image-invariance scheme is based on a set of ob- 
served brightness invariants between different parts of 
a human face [15]. The underlying observation is that 
that while illumination and other changes can signifi- 
cantly alter brightness levels at different parts of a face, 
the local ordinal structure of brightness distribution re- 
mains largely unchanged. For example, the eye regions 
of a face are almost always darker than the cheeks and 
the forehead, except possibly under some very unlikely 
lighting conditions. Similarly, the bridge of the nose 
is always brighter than the two flanking eye regions. 
The scheme encodes these observed brightness regulari- 
ties as a ratio template, which it uses to pattern match 
for faces. A ratio template is a coarse spatial template 
of a face with a few appropriately chosen sub-regions, 
roughly corresponding to key facial features. The bright- 
ness constraints between facial parts are captured by 
an appropriate set of pairwise brighter-darker relation- 
ships between corresponding sub-regions. An image pat- 
tern matches the template if it satisfies all the pairwise 
brighter-darker relationships. 

1.3     Example-based Learning and Face 
Detection 

In this paper, we formulate the face detection problem 
as one of learning to recognize face patterns from ex- 
amples. We use an initial database of about 1000 face 
mugshots to construct a distribution-based generic face 
model with all its permissible pattern variations in a 
high dimensional image window vector space. We then 
train a decision procedure on a sequence of "face" and 
"non-face" examples, to empirically discover a set of op- 
erating parameters and thresholds that separates "face" 
patterns from "non-face" patterns. Our learning-based 
approach has the following distinct advantages over ex- 
isting techniques: 

First,  our modeling scheme does not depend much 



on domain specific knowledge or special hand-crafting 
techniques to parameterize face patterns and their var- 
ious sources of variation. This immediately eliminates 
one potential source of modeling error — that due to 
inaccurate or incomplete knowledge. Unlike deformable 
template approaches or image invariance techniques that 
build models based on prior knowledge of facial struc- 
ture, our scheme essentially builds models that describe 
the distribution of face patterns it receives. Therefore, 
as long as we provide our scheme with a sufficiently com- 
prehensive set of example face patterns, we can expect 
our face models to be more accurate and more descrip- 
tive than the manually synthesized ones. 

Second, unlike most non learning-based approaches 
that typically obtain their operating parameters and 
thresholds manually from a few trial cases, our detec- 
tion scheme derives its parameters and thresholds au- 
tomatically from a large number of input-output exam- 
ples. This makes our scheme potentially superior in two 
ways: (1) For a given set of free thresholds and parame- 
ters, we can expect our scheme to arrive at a statistically 
more reliable set of operating values because it is able to 
process a wider sample of training data automatically. 
(2) Because our scheme automatically learns thresholds 
and parameters, it can be easily made to learn appro- 
priate high-dimensional and non-linear relationships on 
image measurements for distinguishing between "face" 
and "non-face" patterns. These relationships, even if 
they do exist, may be too complex for human observers 
to discover manually. 

Our resulting system also has the following desirable 
characteristics. Performance wise, it can be made arbi- 
trarily robust by increasing the size and variety of its 
training examples. Both false positive and false negative 
detection errors can be easily corrected by further train- 
ing with the wrongly classified patterns. Functionality 
wise, the system is also highly extensible. For instance, 
to detect human faces over a wider range of poses, we 
can apply the same example-based learning technique to 
create a few separate systems that each model and iden- 
tify faces at a different pose, and have the systems run 
in parallel. 

2    System Overview and Approach 

In our view-based approach, faces are treated as a 
class of local target patterns to be detected in an image. 
Because faces are essentially structured objects with the 
same key features geometrically arranged in roughly the 
same fashion, it is possible to define a semantically sta- 
ble "canonical" face structure in the image domain for 
the purpose of pattern matching. Figure 1(a) shows the 
canonical face structure adopted by our system. It cor- 
responds to a square portion of the human face whose 
upper boundary lies just above the eyes and whose lower 
edge falls just below the mouth. The face detection task 
thus becomes one of appropriately representing the class 
of all such "face-like" window patterns, and finding in- 
stances of these patterns in an image. 

Our system detects faces by exhaustively scanning an 
image for these face-like window patterns at all possi- 
ble scales.   Figure 2(a) describes the system's task at 

one fixed scale. The image is divided into multiple, 
possibly overlapping sub-images of the current window 
size. At each window, the system attempts to classify 
the enclosed image pattern as being either "a face" or 
"not a face". This involves taking a set of local im- 
age measurements to extract pertinent information from 
the enclosed pattern, and using a pre-defined decision 
procedure to determine, based on the measurements ob- 
tained, whether or not the enclosed pattern "resembles" 
our canonical face structure. Each time a "matching" 
window pattern is found, the system reports a face at the 
window location, and the scale as given by the current 
window size. Multiple scales are handled by examining 
and classifying windows of different sizes. Our system 
performs an equivalent operation by examining and clas- 
sifying fixed sized window patterns on scaled versions of 
the image. The idea is to resize the image appropri- 
ately, so that the desired window size scales to the fixed 
window dimensions assumed by the image measurement 
routines. 

Clearly, the most critical part of our system is the 
algorithm for classifying window patterns as "faces" or 
"non-faces". The rest of this paper focuses on the algo- 
rithm we developed. Figure 2(b) shows the key compo- 
nents of the algorithm. Basically, the approach is one of 
appropriately modeling the distribution of canonical face 
patterns in some high dimensional image window vector 
space, and learning a functional mapping of input pat- 
tern measurements to output classes from a representa- 
tive set of "face" and "non-face" window patterns. More 
specifically, our approach works as follows: 

1. We require that the window pattern to be classified 
be 19 x 19 pixels in size and appropriately masked 
(see Figure 1). All window patterns of different 
dimensions must first be re-scaled to this size and 
masked before further processing. Matching with a 
fixed sized window simplifies our algorithm because 
it allows us to use the same classification procedure 
for all scales. The masking operation applies some 
prior domain knowledge to the matching problem 
by ignoring certain near-boundary pixels that may 
fall outside the spatial boundaries of a face. 

2. Using a database of canonical "face" window pat- 
terns and a similar database of "non-face" window 
patterns, we construct a distribution-based model 
of canonical face patterns in the masked 19 x 19 
dimensional image window vector space. Our mod- 
eling scheme uses a few "face" pattern prototypes 
to piece-wise approximate the distribution manifold 
of canonical face patterns in the masked 19 x 19 di- 
mensional image window vector space. It also uses a 
few "non-face" pattern prototypes to help capture 
the concavities in the distribution manifold more 
accurately. Together, these "face" and "non-face" 
pattern prototypes serve as a distribution-based 
model for the class of canonical face views. The 
"face" pattern prototypes are synthesized offline by 
performing clustering on the example database of 
"face" window patterns, and the "non-face" proto- 
types are similarly synthesized from the database 
of "non-face" window patterns. The prototypes are 



Figure 1:  (a): A "canonical" face pattern,  (b): A 19 x 19 mask for eliminating near-boundary pixels of canonical face 
patterns,  (c): The resulting "canonical" face pattern after applying the mask. 

hard-wired into the face detection system at com- 
pile time. Each prototype is a multi-dimensional 
Gaussian cluster with a centroid location and a co- 
variance matrix that describes the local data distri- 
bution around the centroid. 

3. For each new window pattern to be classified, we 
compute a set of image measurements as input to 
the "face" or "non-face" decision procedure. Each 
set of image measurements is a vector of distances 
from the new window pattern to the window pat- 
tern prototypes in the image window vector space. 
To compute our vector of distances, we define and 
use a new "Mahalanobis-like" distance metric for 
measuring the distance between the input window 
pattern and each prototype center. The distance 
metric takes into account the shape of each proto- 
type cluster, in order to penalize distances orthog- 
onal to the local data distribution. The resulting 
vector of distances coarsely encodes the new win- 
dow pattern's location relative to the overall dis- 
tribution of canonical face patterns in the image 
window vector space. It serves as a notion of "dif- 
ference" between the new window pattern and the 
class of all canonical face patterns. 

4. We train a multi-layer perceptron (MLP) net to 
identify new window patterns as "faces" or "non- 
faces" from their vector of distance measurements. 
When trained, the multi-layer perceptron net takes 
as input a vector of distance measurements and out- 
puts a '1' if the vector arises from a face pattern, 
and a '0' otherwise. We use a combined database 
of 47316 "face" and "non-face" window patterns to 
train the multi-layer perceptron classifier. 

The following sections describe our window pattern 
classification algorithm in greater detail. Section 3 de- 
scribes our distribution-based model for canonical face 
window patterns. It explains the pre-processing and 
clustering operations we perform for synthesizing "face" 
and "non-face" window pattern prototypes. Section 4 
describes our distance metric for computing classifier in- 
put vectors. Section 5 discusses the classifier training 
process, and in particular, our method of selecting a 
comprehensive but tractable set of training examples. 
In Section 6, we identify the algorithm's critical compo- 
nents in terms of generating correct results, and evaluate 

the system's overall performance. 

3    A Distribution-based Face Model 

Our window classification algorithm identifies faces by 
comparing each new masked window pattern with a 
canonical face model, and declaring a "face" when the 
match is good. This section describes our canonical face 
model. We use a distribution-based modeling scheme 
that tries to represent canonical faces as the set of all 
masked 19 x 19 pixel patterns that are canonical face 
views. More specifically, our distribution-based mod- 
eling scheme works as follows: Suppose we treat each 
unmasked pixel of a 19 x 19 image as a vector dimen- 
sion, then the class of all 19 x 19 pixel images forms 
a vector space whose dimensionality equals the number 
of unmasked image pixels. Each 19 x 19 image pattern 
maps to a specific vector space location, and the set of 
all 19 x 19 pixel canonical face patterns maps to a fixed 
region in this multi-dimensional vector space. So, in the- 
ory, one can model the class of all canonical face views by 
identifying the portion of this multi-dimensional image 
vector space that corresponds to canonical face patterns, 
and representing the region in some tractable fashion. 

3.1     Identifying and Representing the 
Canonical Face Manifold 

In practice, one does not have the set of all 19 x 19 
pixel canonical face patterns to recover the sub-space 
of canonical face views exactly. Figure 3 explains how 
we localize and represent the region of canonical face 
patterns with limited data. Basically, we use a reason- 
ably large example database of canonical face patterns 
and a carefully chosen database of non-face patterns to 
infer the spatial extent of canonical face views in the 
multi-dimensional image vector space. We assume that 
our "face" database contains a sufficiently representative 
sample of canonical face patterns that evenly populates 
the actual vector sub-space of canonical face views. So 
by building a model of the "face" sample distribution, 
one can still obtain a coarse but fairly reliable represen- 
tation of the actual canonical face manifold. Our "non- 
face" data samples are specially selected patterns that lie 
near the boundaries of the canonical face manifold. We 
use the "non-face" patterns to help localize and refine the 
boundaries of the canonical face manifold by explicitly 
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Figure 2: Overview of our face detection system, (a): The system's task at each scale. The image is divided into many 
possibly overlapping windows. Each window pattern gets classified as either "a face" or "not a face", based on a set of 
local image measurements, (b): The key components of the Face Pattern Recognizer block in greater detail. The Face 
Pattern Recognizer block classifies new patterns as "faces" or "non-faces". The algorithm uses a distribution-based model 
to represent the space of all possible canonical face patterns. For each new pattern to be classified, it computes a set of 
"difference" measurements between the new pattern and the canonical face model. A trained classifier identifies the new 
pattern as being either "a face" or "not a face", based on the set of "difference" measurements. 

carving out regions around the "face" sample distribu- 
tion that do not correspond to canonical face views. We 
shall explain how we synthesize our special database of 
"non-face" patterns in Section 5.2. 

Our approach uses six prototype "face" clusters to 
piece-wise approximate the multi-dimensional distribu- 
tion of canonical face patterns, and six "non-face" clus- 
ters to model the distribution of "non-face" patterns. 
Qualitatively, one can view the six "face" clusters as a 
coarse distribution-based representation of the canoni- 
cal face manifold. The six "non-face" clusters help de- 
fine boundaries in and around the manifold by carv- 
ing out nearby regions in the vector space that do not 
correspond to face patterns. Each prototype cluster is 
a multi-dimensional Gaussian with a centroid location 
and a covariance matrix that describes the local data 
distribution. We adopt a piece-wise continuous mod- 
eling scheme because we believe that the actual face 
pattern manifold is continuous and smoothly varying in 
our multi-dimensional image vector space - i.e., more of- 
ten than not, a face pattern with minor spatial and/or 
grey-level perturbations still looks like another valid face 
pattern. Similarly, a non-face pattern with minor varia- 
tions would most likely still appear as a non-face pattern. 
The piecewise smooth modeling scheme serves two im- 
portant functions. First, it performs generalization by 
applying a prior smoothness assumption to the observed 
data sample distribution. This results in a stored data 
distribution function that is well defined even in regions 
of the image vector space where no data samples have 
been observed. Second, it serves as a tractable scheme 
for representing an arbitrary data distribution by means 
of a few Gaussian basis functions. 

The bottom right image of Figure 3 shows the 12 
prototype centroids in our canonical face model.   The 

six "face" prototypes are synthesized by clustering the 
database of canonical face patterns, while the six "non- 
face" prototypes are similarly derived from the database 
of non-face patterns. The rest of this section describes 
our process for synthesizing prototypes in greater detail. 

3.2    Preprocessing 

The first step of synthesizing prototypes is to normalize 
the sample window patterns in the databases. Normal- 
ization compensates for certain sources of image varia- 
tion. It reduces the range of possible window patterns 
the subsequent stages have to consider, thus making the 
modeling and classification tasks easier. Our preprocess- 
ing stage consists of the following sequence of image win- 
dow operations: 

1. Window resizing: Recall that our scheme per- 
forms modeling and classification on 19 x 19 grey- 
level window patterns. We choose a 19 x 19 window 
size to keep the dimensionality of the window vec- 
tor space manageably small, but also large enough 
to preserve details that distinguish between "face" 
and "non-face" window patterns. This operation 
re-scales square window patterns of different sizes 
to 19 x 19 pixels. 

2. Masking: We use the 19 x 19 binary pixel mask 
in Figure 1(b) to zero-out some near-boundary pix- 
els of each window pattern. For "face" patterns, 
these masked pixels usually correspond to back- 
ground pixels irrelevant to the description of a face. 
Zeroing out these pixels ensures that our model- 
ing scheme does not wrongly encode any unwanted 
background structure in our canonical face repre- 
sentation. It also reduces the dimensionality of our 
image window vector space, which helps to make 
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Figure 3: Our distribution-based canonical face model. Top Row: We use a representative sample of canonical face 
patterns to approximate the volume of canonical face views in a masked 19 x 19 pixel image vector space. We model 
the "face" sample distribution with 6 multi-dimensional Gaussian clusters. Center Row: We use a selection of non- 
face patterns to help refine the boundaries of our Gaussian mixture approximation. We model the "non-face" sample 
distribution with 6 Gaussian clusters. Bottom Row: Our final model consists of 6 "face" clusters and 6 "non-face" 
clusters. Each cluster is defined by a centroid and a covariance matrix. The 12 centroids are shown on the right. Note: 
All the distribution plots are fictitious and are shown only to help with our explanation. The 12 centroids are real. 



the modeling and classification tasks a little more 
tractable. 

3. Illumination gradient correction: This oper- 
ation subtracts a best-fit brightness plane from the 
unmasked window pixels. For face patterns, it does 
a fair job at reducing the strength of heavy shadows 
caused by extreme lighting angles. 

4. Histogram equalization: This operation ad- 
justs for several geometry independent sources of 
window pattern variation, including changes in il- 
lumination brightness and differences in camera re- 
sponse curves. 

Notice that the same preprocessing steps must also 
be applied to all new window patterns being classified at 
runtime. 

3.3     Modeling the Distribution of "Face" 
Patterns — Clustering for Positive 
Prototypes 

We use a database of 4150 normalized canonical "face" 
patterns to synthesize 6 "face" pattern prototypes in 
our multi-dimensional image vector space. The database 
consists of 1067 real face patterns, obtained from several 
different image sources. We artificially enlarge the orig- 
inal database by adding to it slightly rotated versions of 
the original face patterns and their mirror images. This 
helps to ensure that our final database contains a reason- 
ably dense and representative sample of canonical face 
patterns. 

Each pattern prototype is a multi-dimensional Gaus- 
sian cluster with a centroid location and a covariance 
matrix that describes the local data distribution around 
the centroid. Our modeling scheme approximates the 
observed "face" sample distribution with only a small 
number of prototype clusters because the sample size is 
still very small compared to the image vector space di- 
mensionality (4150 data samples in a 283 dimensional 
masked image vector space). Using a large number of 
prototype clusters could lead to overfitting the observed 
data distribution with poor generalization results. Our 
choice of 6 pattern prototypes is somewhat arbitrary. 
The system's performance, i.e. its face detection rate 
versus the number of false alarms, does not change much 
with slightly fewer or more pattern prototypes. 

We use a modified version of the k-means clustering 
algorithm to compute 6 face pattern centroids and their 
cluster covariance matrices from the enlarged database 
of 4150 face patterns. Our clustering algorithm differs 
from the traditional k-means algorithm in that it fits 
directionally elongated (i.e. elliptical) Gaussian distri- 
butions to the data sample instead of isotropic Gaussian 
distributions. We adopt a non-isotropic mixture model 
because we believe the actual face data distribution may 
in fact be locally more elongated along certain vector 
space directions than others. 

To implement our elliptical k-means clustering algo- 
rithm, we use an adaptively changing normalized Maha- 
lanobis distance metric instead of a standard Euclidean 
distance metric to partition the data sample into clus- 
ters.   The normalized Mahalanobis distance metric re- 

Figure 4: An example of a naturally occuring "non-face" 
pattern that resembles a face. Left: The pattern viewed 
in isolation. Right: The pattern viewed in the context of 
its environment. 

turns a directionally dependent distance value between 
a new pattern x (in column vector form) and a Gaussian 
cluster centroid ß (also as a column vector). It has the 
form: 

Mn(x, p) = r2(dln2ir + In |E| + (x - /ifE-1^ - /*)). 

where E is the covariance matrix that encodes the clus- 
ter's shape and directions of elongation. The normalized 
Mahalanobis distance differs from the Euclidean distance 
in that it reduces the penalty of pattern differences along 
a cluster's major directions of data distribution. This 
penalty adjustment feature allows the clustering algo- 
rithm to form elliptical clusters instead of spherical clus- 
ters where there is a non-isotropic local data distribu- 
tion. Section 4.2 explains the normalized Mahalanobis 
distance metric in greater detail. 

The following is a crude outline of our elliptical k- 
means clustering algorithm: 

1. Obtain k (6 in our case) initial pattern centers by 
performing vector quantization with euclidean dis- 
tances on the enlarged face database. Divide the 
data set into k partitions (clusters) by assigning 
each data sample to the nearest pattern center in 
euclidean space. 

2. Initialize the covariance matrices of all k clusters to 
be the identity matrix. 

3. Re-compute pattern centers to be the centroids of 
the current data partitions. 

4. Using the current set of k pattern centers and their 
cluster covariance matrices, re-compute data parti- 
tions by re-assigning each data sample to the near- 
est pattern center in normalized Mahalanobis dis- 
tance space. If the data partitions remain un- 
changed or if the maximum number of inner-loop 
(i.e. Steps 3 and 4) iterations has been exceeded, 
proceed to Step 5. Otherwise, return to Step 3. 

5. Re-compute the covariance matrices of all k clusters 
from their respective data partitions. 

6. Using the current set of k pattern centers and their 
cluster covariance matrices, re-compute data parti- 
tions by re-assigning each data sample to the near- 
est pattern center in normalized Mahalanobis dis- 
tance space. If the data partitions remain un- 
changed or if the maximum number of outer-loop 
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Figure 5: An illustration on how "negative" prototypes can help model concavities in a distribution with fewer Gaussian 
basis functions. Left: A hypothetical data distribution in 2 dimensions with a concave surface. Center: The 
distribution can be reasonably approximated with one positive Gaussian prototype encircling the distribution and one 
negative prototype carving out the concave region. Right: To model the same distribution with only positive prototypes, 
one has to use more Gaussian basis functions. The difference in number of basis functions can be a lot larger in a higher 
dimensional space. 

(i.e.   Steps 3 to 6) iterations has been exceeded, 
proceed to Step 7. Otherwise, return to Step 3. 

7. Return the current set of k pattern centers and their 
cluster covariance matrices. 

The inner loop (i.e. Steps 3 and 4) is analogous to the 
traditional k-means algorithm. Given a fixed distance 
metric, it finds a set of k pattern prototypes that stably 
partitions the sample data set. Our algorithm differs 
from the traditional k-means algorithm because of Steps 
5 and 6 in the outer loop, where we try to iteratively 
refine and recover the cluster shapes as well. 

3.4     Modeling the Distribution of "Non-Face" 
Patterns — Clustering for Negative 
Prototypes 

There are many naturally occuring "non-face" patterns 
in the real world that look like faces when viewed in iso- 
lation. Figure 4 shows one such example. In our multi- 
dimensional image window vector space, these "face- 
like" patterns lie along the boundaries of the canonical 
face manifold. Because we are coarsely representing the 
canonical face manifold with 6 Gaussian clusters, some 
of these face-like patterns may even be located nearer the 
"face" cluster centroids than some real "face" patterns. 
This may give rise to misclassiftcation problems, because 
in general, we expect the opposite to be true, i.e. face 
patterns should lie nearer the "face" cluster centroids 
than non-face patterns. 

In order to avoid possible misclassification, we try to 
obtain a comprehensive sample of these face-like patterns 
and explicitly model their distribution using 6 "non- 
face" prototype clusters. These "non-face" clusters carve 
out negative regions around the "face" clusters that do 
not correspond to face patterns. Each time a new win- 
dow pattern lies too close to a "non-face" prototype, we 
favor a "non-face" hypothesis even if the pattern also lies 
near a "face" prototype. Our choice of using exactly 6 
pattern prototypes to model the "non-face" distribution 
is also somewhat arbitrary, as in the case of modeling the 

"face" pattern distribution. The system's face detection 
rate versus false alarm ratio does not change much with 
slightly fewer or more "non-face" pattern prototypes. 

We use our elliptical k-means clustering algorithm to 
obtain 6 "non-face" prototypes and their cluster covari- 
ance matrices from a database of 6189 face-like patterns. 
The database was incrementally generated in a "boot- 
strap" fashion by first building a reduced version of our 
face detection system with only "face" prototypes, and 
collecting all the false positive patterns it detects over a 
large set of random images. Section 5.2 elaborates fur- 
ther on our "boot-strap" data generation technique. 

3.5     Summary and Remarks 

One of the key difficulties in face detection is to account 
for the wide range of permissible face pattern variations 
that cannot be adequately captured by geometric mod- 
els, correlation templates and other classical parametric 
modeling techniques. Our approach addresses this prob- 
lem by modeling the distribution of frontal face patterns 
directly in a fixed 19 x 19 pixel image vector space. We 
infer the actual distribution of face patterns in the im- 
age vector space from a sufficiently representative set of 
face views, and a carefully chosen set of non-face pat- 
terns. The distribution-based modeling scheme statis- 
tically encodes observable face pattern variations that 
cannot otherwise be easily parameterized by classical 
modeling techniques. To generalize from the slow vary- 
ing nature of the face pattern distribution in the image 
vector space, and to construct a tractable model for the 
face pattern distribution, we interpolate and represent 
the observed distribution in a piecewise-smooth fashion 
using a few multi-dimensional Gaussian clusters. 

Our final distribution-based model consists of 6 "face" 
clusters for coarsely approximating the canonical face 
pattern manifold in the image vector space, and 6 "non- 
face" clusters for representing the distribution of a spe- 
cially selected "non-face" data sample. The non-face 
patterns come from non-face regions in the image vector 
space near the canonical face manifold. We propose two 
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Figure 6: The measurements returned from matching a test pattern against our distribution-based model, (a): Each 
set of measurements is a vector of 12 distances between the test pattern and the model's 12 cluster centroids. (b): Each 
distance measurement between the test pattern and a cluster centroid is a 2-value distance metric. The first component is a 
Mahalanobis distance between the test pattern's projection and the cluster centroid in a subspace spanned by the cluster's 
75 largest eigenvectors. The second component is the Euclidean distance between the test pattern and its projection in 
the subspace. So, the entire set of 12 distance measurements is a vector of 24 values.  

possibly related ways of reasoning about the 6 "non-face" 
pattern clusters: 

1. The 6 "non-face" clusters explicitly model the dis- 
tribution of face-like patterns that are not actual 
faces — i.e. "near miss" patterns that the face de- 
tection system should classify as "non-faces". They 
define and represent a separate "near-miss" pattern 
class in the multi-dimensional vector space, just like 
how the 6 "face" clusters encode a "canonical face" 
pattern class. Test patterns that fall under this 
"near-miss" class are classified as non-faces. 

2. The 6 "non-face" clusters carve out regions in and 
around the "face" clusters that should not corre- 
spond to face patterns. They help shape the bound- 
aries in our Gaussian mixture model of the canoni- 
cal face manifold. More interestingly, they can also 
help one model concavities in the canonical face 
manifold with fewer Gaussian basis functions (see 
Figure 5). This advantage of using "non-face" clus- 
ters becomes especially critical when one has too 
few face data samples to model a concave distribu- 
tion region with a large number of Gaussian "face" 
clusters. 

4    Matching Patterns with the Model 
To detect faces, our system first matches each candi- 
date window pattern in an input image against our 
distribution-based canonical face model. Each match 
returns a set of measurements that captures a notion 
of "similarity" or "difference" between the test pattern 
and the face model. At a later stage, a trained classifier 
determines, based on the set of "match" measurements, 
whether or not the test pattern is a frontal face view. 

This section describes the set of "match" measure- 
ments we compute for each new window pattern. Each 
set of measurements is a vector of 12 distances between 
the test window pattern and the model's 12 cluster cen- 
troids in our multi-dimensional image vector space (see 
Figure 6(a)). One way of interpreting our vector of dis- 
tances is to treat each distance measurement as the test 
pattern's actual distance from some key reference loca- 
tion on or near the canonical face pattern manifold. The 
set of all 12 distances can then be viewed as a crude "dif- 
ference" notion between the test pattern and the entire 
"canonical face" pattern class. 

4.1     A 2-Value Distance Metric 

We now define a new metric for measuring distance 
between a test pattern and a prototype cluster centroid. 
Ideally, we want a metric that returns small distances 
between face patterns and the "face" prototypes, and ei- 
ther large distances between non-face patterns and the 
"face" prototypes, or small distances between non-face 
patterns and the "non-face" centers. We propose one 
such measure that normalizes distances by taking into 
account both the local data distribution around a proto- 
type centroid, and the reliability of the local distribution 
estimate. The measure scales up distances orthogonal 
to a cluster's major axes of elongation, and scales down 
distances along the cluster's major elongation directions. 
We argue that such a distance measure should meet our 
ideal goals reasonably well, because we expect most face 
patterns on the face manifold to lie along the major axes 
of one or more "face" clusters, and hence register small 
distances with one or more "face" prototypes. Similarly, 
we expect most non-face patterns to lie either far away 
from all the "face" clusters or along the major axes of 
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Figure 7:  Graphs of eigenvalues in decreasing order of magnitude.  Left: Decreasing eigenvalues for 6 "Face" clusters. 
Right : Decreasing eigenvalues for 6 "Non-Face" clusters. 

one or more "non-face" clusters, and hence either regis- 
ter large distances with all the "face" prototypes or small 
distances with some "non-face" prototypes. 

Our proposed distance measure consists of two out- 
put components (see Figure 6(b)). The first value is 
a Mahalanobis-like distance between the test pattern 
and the prototype centroid, defined within a lower- 
dimensional sub-space of our masked 19 x 19 pixel image 
vector space. The sub-space is spanned by the 75 largest 
eigenvectors of the prototype cluster. This distance com- 
ponent is directionally weighted to reflect the test pat- 
tern's location relative to the major elongation direc- 
tions in the local data distribution around the proto- 
type center. The second value is a normalized Euclidean 
distance between the test pattern and its projection in 
the lower-dimensional sub-space. This is a uniformly 
weighted distance component that accounts for pattern 
differences not included in the first component due to 
possible modeling inaccuracies. We elaborate further on 
the two components below. 

4.2     The Normalized Mahalanobis Distance 

We begin with a brief review of the Mahalanobis dis- 
tance. Let £ be a column vector test pattern,'/? be a 
column vector prototype centroid, and E be the covari- 
ance matrix describing the local data distribution near 
the centroid. The Mahalanobis distance between the test 
pattern and the prototype centroid is given by: 

M(x,ß) = (x-ß)TT,-1(x-ß). 

Geometrically, the Mahalanobis distance can be inter- 
preted as follows. If one models the prototype cluster 
with a best-fit multi-dimensional Gaussian distribution, 
then one gets a best-fit Gaussian distribution centered 
at ß with covariance matrix E. All points at a given Ma- 
halanobis distance from ß occupy a constant density sur- 
face in this multi-dimensional vector space. This inter- 
pretation of the Mahalanobis distance leads to a closely 
related distance measure, which we call the normalized 
Mahalanobis distance, given by: 
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Mn{x,ß) = -(rfln2ir + ln|E| + (x-/i)TE"1(*-/i)). 

Here, d is the vector space dimensionality and |E| means 
the determinant of E. 

The normalized Mahalanobis distance is simply the 
negative natural logarithm of the best-fit Gaussian dis- 
tribution described above. It is normalized in the sense 
that it originates directly from a probability density 
distribution that integrates to unity. Our modified k- 
means clustering algorithm in Section 3 uses the normal- 
ized Mahalanobis distance metric instead of the standard 
form because of stability reasons. Notice that for a given 
spatial displacement between a test pattern and a proto- 
type centroid, the standard Mahalanobis distance tends 
to be smaller for long clusters with large covariance ma- 
trices than for small clusters. So, if one uses a standard 
Mahalanobis distance metric to perform clustering, the 
larger clusters will constantly increase in size and even- 
tually overwhelm all the smaller clusters. 

As a distance metric for establishing the class iden- 
tity of test patterns, the Mahalanobis distance and its 
normalized form are both intuitively pleasing for the fol- 
lowing reason: They both measure pattern differences in 
a distribution dependent manner, unlike the Euclidean 
distance which measures pattern differences in an abso- 
lute sense. More specifically, the distances they mea- 
sure are indicative of how the test pattern ranks relative 
to the overall location of other known patterns in the 
pattern class. In this sense, they capture very well the 
notion of "similarity" or "dis-similarity" between a test 
pattern and a pattern class. 

4.3     The First Distance Component — 
Distance within a Normalized 
Low-Dimensional Mahalanobis Subspace 

As mentioned earlier, our distance metric consists of 
2 output values as shown in Figure 6(b). The first 
value, X>i, is a Mahalanobis-like distance between the 
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Figure 8: The eigen-image model of faces by Turk and Pentland [19] [12]. The approach represents the space of all 
face views (i.e. the "Face Space") as a linear combination of several orthonormal eigen-images. The eigen-images are 
computed by performing PCA on an example database of face patterns. The modeling scheme assumes that all face views 
lie within the "face space", and each face view corresponds to a set of coefficients that describes its appearance as a linear 
combination of the eigen-images. One can use the coefficients as features to recognize faces of different individuals. One 
can also determine whether or not a test pattern is a face by computing and thresholding d, a measure of how badly the 
eigen-images reconstruct the test pattern.   

test pattern and the prototype center. This distance is 
defined within a 75-dimensional sub-space of our masked 
19 x 19 pixel image vector space, spanned by the 75 
largest eigenvectors of the current prototype cluster. Ge- 
ometrically, we can interpret the first distance value as 
follows: The test pattern is first projected onto the 75 
dimensional vector sub-space. We then compute the nor- 
malized Mahalanobis distance between the test pattern's 
projection and the prototype center as the first output 
value. Like the standard Mahalanobis distance, this first 
value locates and characterizes the test pattern relative 
to the cluster's major directions of data distribution. 

Mathematically, the first value is computed as follows: 
Let x be the column vector test pattern, p be the pro- 
totype pattern, £75 be a matrix with 75 columns, where 
column i is a unit vector in the direction of the cluster's 
ith largest eigenvector, and W75 be a diagonal matrix 
of the corresponding 75 largest eigenvalues. The covari- 
ance matrix for the cluster's data distribution in the 75 
dimensional subspace is given by £75 = {EJ^WJ^E^), 

and the first distance value is: 

Vi(x, p) = ^(75ln.2ir + In |E75| + (x - p)TXn(x - /»))• 

We emphasize again that this first value is not a "com- 
plete" distance measure in our masked 19 x 19 pixel im- 
age vector space, but rather a "partial" distance measure 
in a subspace of the current cluster's 75 most signifi- 
cant eigenvectors. The measure is not "complete" in the 
sense that it does not account for pattern differences in 
certain image vector space directions, namely differences 

11 

orthogonal in direction to the cluster's 75 most signifi- 
cant eigenvectors. We omit the smaller eigenvectors in 
this directionally dependent distance measure because 
we believe that their corresponding eigenvalues may be 
significantly inaccurate due to the small number of data 
samples available to approximate each cluster. For in- 
stance, we have, on the average, fewer than 700 data 
points to approximate each "face" cluster in a 283 di- 
mensional masked image vector space. Using the smaller 
eigenvectors and eigenvalues to compute a distribution 
dependent distance can therefore easily lead to meaning- 
less results. 

Figure 7 plots the eigenvalues of our 12 prototype clus- 
ters in decreasing order of magnitude. Notice that for all 
12 curves, only a small number of eigenvectors are sig- 
nificantly larger than the rest. We use the following cri- 
terion to arrive at 75 "significant" eigenvectors for each 
cluster: We eliminate from each cluster the maximum 
possible number of trailing eigenvectors, such that the 
sum of all eliminated eigenvalues is still smaller than the 
largest eigenvalue in the cluster. This criterion leaves 
us with approximately 75 eigenvectors for each cluster, 
which we standardize at 75 for the sake of simplicity. 

4.4 The Second Distance Component — 
Distance from the Low-Dimensional 
Mahalanobis Subspace 

The second output value of our distance metric is a stan- 
dard Euclidean distance between the test pattern and 
its projection in the 75 dimensional sub-space. This 
distance component accounts for pattern differences not 
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Figure 9: The view-based model of volcanos by Burl et. 
al. [4]. The approach assumes that the set of all volcano 
patterns lies within a low dimensional model space, spanned 
by a small number of the largest principal component vec- 
tors from a volcano image database. Each pattern in the 
model space corresponds to a set of coefficients that de- 
scribes the pattern's appearance as a linear combination of 
the principal component images. Not all linear combina- 
tions of principal component images are volcano patterns, 
so one can detect volcanos by learning from examples the 
range of coefficient values that corresponds to volcanos. 

captured by the first component, namely pattern differ- 
ences in the smaller eigenvector directions. Because we 
may not have a reasonable estimate of the smaller eigen- 
values, we simply assume an isotropic Gaussian sample 
data distribution in the smaller eigenvector directions, 
and hence a Euclidean distance measure. 

Using the notation from the previous sub-section, we 
can show that the second component is simply the L2 
norm of the displacement vector between x and its pro- 
jection Xp\ 

V2(x,ß) = \\{x-xp (I - E75E?5)(x - ß) 

Notice that on its own, the second distance value is 
also not a "complete" distance measure in our masked 
19 x 19 pixel image vector space. Specifically, it does 
not account for pattern differences in the subspace of 
the cluster's 75 most significant eigenvectors. It com- 
plements the first output value to form a "complete" 
distance measure that captures pattern differences in all 
directions of our masked 19 x 19 pixel image vector space. 

4.5     Relationship between our 2-Value Distance 
and the Mahalanobis Distance 

There is an interesting relationship between our 2-Value 
distance metric and the "complete" normalized Maha- 
lanobis distance involving all 283 eigenvectors of a pro- 

totype cluster l. Recall from Section 4.2 that the Ma- 
halanobis distance and its normalized form arise from 
fitting a multi-dimensional full-covariance Gaussian to a 
sample data distribution. For high dimensional vector 
spaces, modeling a distribution with a full-covariance 
Gaussian is often not feasible because one usually has 
too few data samples to recover the covariance matrix 
accurately. In a d dimensional vector space, each full- 
covariance Gaussian requires d parameters to define its 
centroid and another d(d+ l)/2 more parameters to de- 
fine its covariance matrix. For d = 283, this amounts to 
40469 parameters! 

One way of reducing the number of model parameters 
is to use a restricted Gaussian model with a diagonal co- 
variance matrix, i.e., a multi-dimensional Gaussian dis- 
tribution whose elongation axes are aligned to the vec- 
tor space axes. In our domain of 19 x 19 pixel images, 
this corresponds to a model whose individual pixel values 
may have different variances, but whose pair-wise pixel 
values are all uncorrelated. Clearly, this is a very poor 
model for face patterns which are highly structured with 
groups of pixels having very highly correlated intensities. 

An alternative way of simplifying the Gaussian model 
is to preserve only a small number of "significant" eigen- 
vectors in the covariance matrix. One can show that 
a d dimensional Gaussian with h principal components 
has a covariance matrix of only h(2d — h + l)/2 free 
parameters. This can easily be a tractable number of 
model parameters if h is small. Geometrically, the op- 
eration corresponds to projecting the original d dimen- 
sional Gaussian cluster onto an h dimensional subspace, 
spanned by the cluster's h most "significant" elongation 
directions. The h dimensional subspace projection pre- 
serves the most prominent correlations between pixels 
in the target pattern class. To exploit these pixel-wise 
correlations for pattern classification, one computes a di- 
rectionally weighted Mahalanobis distance between the 
test pattern's projection and the Gaussian centroid in 
this h dimensional subspace — V\ of our 2-Value dis- 
tance metric. 

The orthogonal subspace is spanned by the d — h re- 
maining eigenvectors of the original Gaussian cluster. 
Because this subspace encodes pixel correlations that are 
less prominent and possibly less reliable due to limited 
training data, we simply assume an isotropic Gaussian 
distribution of data samples in this subspace, i.e. a di- 
agonal covariance matrix Gaussian with equal variances 
along the diagonal. The isotropic Gaussian distribu- 
tion requires only 1 free parameter to describe its vari- 
ance. To measure distances in this subspace of isotropic 
data distribution, we use a directionally independent Eu- 
clidean distance — T>i of our 2-Value distance metric. 

We can thus view our 2-Value distance metric as a 
robust approximate Mahalanobis distance that one uses 
when there is insufficient training data to accurately re- 
cover all the eigenvectors and eigenvalues of a Gaussian 
model. The approximation degrades gracefully by using 
its limited degrees of freedom to capture the most promi- 
nent pixel correlations in the data distribution.   Notice 

12 

'See [8] for a similar interpretation and presentation. Our 
explanation here is adapted from theirs. 
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Figure 10: One of the multi-layer perceptron (MLP) net architectures we trained to identify face patterns from our vector 
of distance measurements. The net has 12 pairs of input units to accept the 12 pairs of distance values from our matching 
stage. When trained, the output unit returns a 1 for face patterns and a 0 otherwise. Notice that this net has one special 
layer of hidden units that combines each 2-Value distance pair into a single distance value. Our experiments show that 
the detailed net architecture is really not crucial in this application. 

that as the data sample size increases, one can preserve 
a larger number of principal components in the Gaussian 
model. This results in V\ becoming increasingly like the 
"complete" Mahalanobis distance with V2 vanishing in 
size and importance. 

4.6    Relationship between our 2-Value Distance 
and some PCA-based Classical Distance 
Measures 

Our 2-Value distance metric is also closely related to the 
classical distance measures used by principal components 
analysis (PCA, also called Karhunen-Loeve expansion) 
based classification schemes [5] [6] [18]. We examine two 
such distance measures below. 

A standard way of modeling a 3D object for pattern 
recognition is to represent its space of 2D views using a 
few basis images, obtained by performing principal com- 
ponents analysis on a comprehensive set of 2D views. 
The modeling approach assumes that all possible 2D 
views of the target object lie within a low dimensional 
sub-space of the original high dimensional image space. 
The low dimensional sub-space is linearly spanned by 
the principal components. Each new view of the target 
object can be represented by a set of coefficients that 
describes the view as a linearly weighted superposition 
of the principal components. 

Kirby and Sirovich [16] [9] have used principal compo- 
nents analysis methods to build low-dimensional mod- 
els for characterizing the space of human faces. As a 
representative recent example, let us consider Turk and 
Pentland's application of PCA techniques to face recog- 
nition [19] and facial feature detection [12]. To opti- 
mally represent their "face space", Turk and Pentland 
compute an orthonormal set of eigen-images from an ex- 
ample database of face patterns to span the space. New 
face views are represented by projecting their image pat- 
terns onto the set of eigen-images to obtain their linear 
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combination coefficients. Because the technique assumes 
that all face patterns actually lie within the "face space", 
one can use the set of linear combination coefficients as 
features to parameterize and recognize faces of different 
individuals (see Figure 8). Similarly, one can determine 
whether or not a given pattern is a face by measuring 
how well or poorly the eigen-images reconstruct the pat- 
tern — i.e., the pattern's distance (d in Figure 8) from 
the "face space" [12]. 

In another recent application of classical techniques, 
Burl et. al. [4] have used a different PCA based approach 
for a terrain classification task on finding volcanos in 
SAR images of Venus. Their system builds a low di- 
mensional view-based volcano model, parameterized by a 
small number of the largest principal component vectors 
from an example set of volcano images (see Figure 9). 
Within this low-dimensional model space, Burl et. al. 
further observe that not all reconstructible patterns are 
actual volcano views; i.e., not all linear combinations of 
principal component images are volcano patterns. Thus, 
to detect volcanos, they use the set of linear combina- 
tion coefficients as classification features, and learn from 
examples the range of coefficient values, i.e. distances 
within the volcano model space, that actually correspond 
to volcano patterns. 

One can relate our 2-Value distance metric to 
the above PCA based classification techniques as fol- 
lows: Suppose we treat each Gaussian cluster in our 
distribution-based model as locally representing a sub- 
class of "face" or "non-face" patterns, then the cluster's 
75 largest eigenvectors can be viewed as a set of basis im- 
ages that linearly span the sub-class. Each new pattern 
in the sub-class corresponds to a set of 75 coefficients in 
the model space. 

Our distance component T>2 is the Euclidean distance 
between a test pattern and the cluster's 75 largest eigen- 
vector subspace. Assuming that the 75 eigenvectors are 
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Figure 11: Artificially generating virtual examples oi face patterns. For each original face pattern in our training database, 
we can generate a few new face patterns using some simple image transformations. We artificially enlarge our face database 
in this fashion to obtain a more comprehensive sample of face patterns. 

the "basis views" that span our target sub-class, this dis- 
tance component measures how poorly the basis views 
reconstruct the test pattern, and hence how "different" 
the test pattern is relative to the entire target sub-class. 
This distance is analogous to Turk and Pentland's dis- 
tance to "face space" metric (i.e. d in Figure 8), which 
quantifies the "difference" between a test pattern and 
the class of face views. 

The distance component V\ is a Mahalanobis distance 
between the cluster centroid and a test pattern's projec- 
tion in the 75 largest eigenvector subspace. Here, we 
implicitly assume, like Burl et. al., that not all recon- 
structible patterns in our 75 eigenvector model space 
are views of the target sub-class, and that all views of 
the target sub-class are located within a certain Maha- 
lanobis distance from the cluster centroid. This con- 
strains the range of model coefficients that correspond 
to actual target patterns, just like how Burl et. al. con- 
strain by learning their range of model parameters that 
correspond to actual volcano views. 

Thus, our X>i and T>2 distance measurements corre- 
spond to different classical classification criteria used 
also recently. As far as we know, this paper presents the 
first attempt to combine these two measures for pattern 
classification. 

5    The Classifier 

The classifier's task is to identify "face" test patterns 
from "non-face" patterns based on their match feature 
vectors of 12 distance measurements. Our approach 
treats the classification stage as one of learning a func- 
tional mapping from input feature distance vectors to 
output classes using a representative set of training ex- 
amples. 

5.1    A Multi-Layer Perceptron Classifier 

We use a Multi-Layer Perceptron (MLP) net to perform 
the desired classification task. The net has 12 pairs of 
input terminals, one output unit and 24 hidden units. 
Each hidden and output unit computes a weighted sum 
of its input links and performs sigmoidal thresholding 
on its output. During classification, the net is given a 
vector of the current test pattern's distance measure- 
ments to the 12 prototype centers. Each input terminal 
pair receives the distance values for a designated proto- 
type pattern. The output unit returns a T' if the input 
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distance vector arises from a "face" pattern, and a '0' 
otherwise. 

In our current system, the hidden units are partially 
connected to the input terminals and output unit as 
shown in Figure 10. The connections exploit some prior 
knowledge of the problem domain. Notice in particular 
that there is one layer of hidden units that combines each 
2-Value distance pair into a single distance value. Our 
experiments in the next section will show that the num- 
ber of hidden units and network connectivity structure 
do not significantly affect the classifier's performance. 

We train our multi-layer perceptron classifier on fea- 
ture distance vectors from a database of 47316 window 
patterns. There are 4150 positive examples of "face" 
patterns in the database and the rest are "non-face" 
patterns. The net is trained with a standard back- 
propagation learning algorithm [14] until the output er- 
ror stabilizes at a very small value. For the particular 
multi-layer perceptron net architecture in Figure 10, we 
actually get a training output error of 0. 

5.2     Generating and Selecting Training 
Examples 

In many example-based learning applications, how well 
a learner eventually performs on its task depends heav- 
ily on the quality of examples it receives during training. 
An ideal learning scenario would be to give the learner 
as large a set of training examples as possible, in order 
to attain a comprehensive sampling of the input space. 
Unfortunately, there are some real-world considerations 
that could seriously limit the size of training databases, 
such as shortage of free disk space and computation re- 
source constraints. 

How do we build a comprehensive but tractable 
database of "face" and "non-face"" patterns? For "face" 
patterns, the task at hand seems rather straight forward. 
We simply collect all the frontal views of faces we can find 
in mugshot databases and other image sources. Because 
we do not have access to many mugshot databases and 
the size of our mugshot databases are all fairly small, we 
do not encounter the problem of having to deal with an 
unmanageably large number of "face" patterns. In fact, 
to make our set of "face" patterns more comprehensive, 
we even artificially enlarged our data set by adding vir- 
tual examples [13] of faces to the "face" database. These 
virtual examples are mirror images and slightly rotated 
versions of the original face patterns, as shown in Fig- 



Figure  12:   Some false detects by an earlier version of our face detection system, marked by solid squares on the two 
images above. We use these false detects as new negative examples to re-train our system in a "boot-strap" fashion. 

ure 11. 
For "non-face" patterns, the task we have seems more 

tricky. In essence, every square non-canonical face win- 
dow pattern of any size in any image is a valid "non-face" 
pattern. Clearly, even with a few source images, our set 
of "non-face" patterns can grow intractably large if we 
are to include all valid "non-face" patterns in our train- 
ing database. 

To constrain the number of "non-face" examples in 
our database, we use a "boot-strap" strategy that in- 
crementally selects only those "non-face" patterns with 
high information value. The idea works as follows: 

1. Start with a small and possibly incomplete set of 
"non-face" examples in the training database. 

2. Train the multi-layer perceptron classifier with the 
current database of examples. 

3. Run the face detector on a sequence of random 
images. Collect all the "non-face" patterns that 
the current system wrongly classifies as "faces" (see 
Figure 12). Add these "non-face" patterns to the 
training database as new negative examples. 

4. Return to Step 2. 

At the end of each iteration, the "boot-strap" strat- 
egy enlarges the current set of "non-face" patterns with 
new "non-face" patterns that the current system classi- 
fies wrongly. We argue that this strategy of collecting 
wrongly classified patterns as new training examples is 
reasonable, because we expect these new examples to 
improve the classifier's performance by steering it away 
from the mistakes it currently commits. 

Notice that if necessary, we can use the same "boot- 
strap" technique to enlarge the set of positive "face" pat- 
terns in our training database. Also, notice that at the 
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end of each iteration, we can re-cluster our "face" and 
"non-face" databases to generate new prototype patterns 
that might model the distribution of face patterns more 
accurately. 

6    Results and Performance Analysis 

We implemented and tested our face detection system 
on a wide variety of images. Figure 13 shows some sam- 
ple results. The system detects faces over a fairly large 
range of scales, beginning with a window size of 19 x 19 
pixels and ending with a window size of 100 x 100 pixels. 
Between successive scales, the window width is enlarged 
by a factor of 1.2. 

The system writes its face detection results to an out- 
put image. Each time a "face" window pattern is found 
in the input, an appropriately sized dotted box is drawn 
at the corresponding window location in the output im- 
age. Notice that many of the face patterns in Figure 13 
are enclosed by multiple dotted boxes. This is because 
the system has detected those face patterns either at a 
few different scales or at a few slightly offset window 
positions or both. 

The upper left and bottom right images of Figure 13 
show that our system works reliably without making 
many false positive errors (none in this case), even for 
fairly complex scenes. Notice that the current system 
does not detect Geordi's face. This is because Geordi's 
face differs significantly from the notion of a "typical" 
face pattern in our training database of faces — his eyes 
are totally occluded by an opaque metallic visor. The 
upper right input-output image pair demonstrates that 
the same system detects real faces and hand-drawn faces 
equally well, while the bottom left image shows that 
the system finds faces successfully at two very different 



Figure 13: Some face detection results by our system. The upper left and bottom right images show that the system 
finds faces in complex scenes without making many false detects. The upper right image pair shows that the same system 
detects real faces and hand drawn faces equally well. The bottom left image shows the system working successfully at two 
very different scales. Notice that in the cards image, the system detects only the vertically oriented face patterns as it is 
meant to at this time. 
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scales. 

6.1 Measuring the System's Performance 

To quantitatively measure our system's performance, we 
ran our system on two test databases and counted the 
number of correct detections versus false alarms. All the 
face patterns in both test databases are new patterns not 
found in the training data set. The first test database 
consists of 301 frontal and near-frontal face mugshots 
of 71 different people. All the images are high quality 
digitized images taken by a CCD camera in a labora- 
tory environment. There is a fair amount of lighting 
variation among images in this database, with about 10 
images having very strong lighting shadows. We use this 
database to obtain a "best case" detection rate for our 
system on high quality input patterns. 

The second database contains 23 images with a total 
of 149 face patterns. There is a wide variation in quality 
among the 23 images, ranging from high quality CCD 
camera pictures to low quality newspaper scans. Most 
of these images have complex background patterns with 
faces taking up only a very small percentage of the total 
image area. We use this database to obtain an "average 
case" performance measure for our system on a more 
representative sample of input images. 

For the first database, our system correctly finds 
96.3% of all the face patterns and makes only 3 false 
detects. All the face patterns that it misses have either 
strong illumination shadows or fairly large off-plane ro- 
tation components or both. Even though this high de- 
tection rate applies only to high quality input images, 
we still find the result encouraging because often, one 
can easily replace poorer sensors with better ones to ob- 
tain comparable results. For the second database, our 
system achieves a 79.9% detection rate with 5 false posi- 
tives. The face patterns it misses are mostly either from 
low quality newspaper scans or hand drawn pictures. We 
consider this behavior acceptable because the system is 
merely degrading gracefully with poorer image quality. 

6.2 Analyzing the System's Components 

We conducted the following additional experiments to 
identify the key components of our face detection algo- 
rithm. Specifically, we examined how the following three 
aspects of our system affects its performance in terms of 
face detection rate versus false alarm ratio: (1) The clas- 
sifier architecture, (2) our 2-Value distance metric versus 
other distance measures for computing feature distance 
vectors, and (3) the importance of "non-face" prototypes 
in our distribution-based face model. 

Classifier Architecture The first experiment investi- 
gates how varying the classifier's architecture affects our 
system's overall performance. To do this, we create two 
new systems with different classifier architectures, and 
compare their face detection versus false alarm statistics 
with those of our original system. Our two new classifier 
architectures are: 

1. A single perceptron unit. We replace the orig- 
inal multi-layer perceptron net in Figure 10 with a 
single perceptron unit connected directly to the 12 
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pairs of input terminals. The single perceptron unit 
computes a sigmoidally thresholded weighted sum 
of its input feature distance vector. It represents 
the simplest possible architecture in the family of 
multi-layer perceptron net classifiers, and its pur- 
pose here is to provide an "extreme case" perfor- 
mance figure for multi-layer perceptron net classi- 
fiers in this problem domain. 

2. A nearest neighbor classifier. We perform near- 
est neighbor classification on feature distance vec- 
tors to identify new test patterns. _ The nearest 
neighbor classifier works as follows: For each train- 
ing pattern, we compute and store its 24 value fea- 
ture distance vector and output class at compile 
time. When classifying a new test pattern, we com- 
pute its 24 value feature distance vector and return 
the output class of the closest stored feature vector 
in Euclidean space. The nearest neighbor classifier 
provides us with a performance figure for a different 
classifier type in this problem domain. 

The Distance Metric The second experiment inves- 
tigates how using a different distance metric for com- 
puting feature distance vectors in the matching stage 
affects the system's performance. We compare our 2- 
Value distance metric with three other distance mea- 
sures: (1) the normalized Mahalanobis distance within 
a 75 dimensional vector subspace spanned by the pro- 
totype cluster's 75 largest eigenvectors — i.e. the first 
component only (2>i) of our 2-Value distance metric, (2) 
the Euclidean distance between the test pattern and its 
projection in the 75 dimensional subspace — i.e. the sec- 
ond component only (V2) of our 2-Value distance metric, 
and (3) the standard normalized Mahalanobis distance 
(Mn) between the test pattern and the prototype cen- 
troid within the full image vector space. 

To conduct this experiment, we repeat the previous 
set of classifier experiments three additional times, once 
for each new distance metric we are comparing. Each 
new set of experiments differs from the original set as fol- 
lows: During the matching stage, we use one of the three 
distance measures above instead of the original 2-Value 
distance metric to compute feature distance vectors be- 
tween new test patterns and the 12 prototype centroids. 
Notice that because the three new distance measures are 
all single-value measurements, our new feature distance 
vectors have only 12 values instead of 24 values. This 
means that we have to modify the classifier architectures 
accordingly by reducing the number of input terminals 
from 24 to 12. 

"Non-Face" Prototypes This experiment looks at 
how differently the system performs with and without 
"non-face" prototypes in the distribution-based model. 
We compare results from our original system, whose face 
model contains both "face" and "non-face" prototypes, 
against results from two new systems whose internal 
models contain only "face" prototypes. The two new 
systems are: 

1. A system with 12 "face" prototypes and 
no "non-face" prototypes. In this system, we 
fix the total number of pattern prototypes in the 



Distance Metric 
Classifier Architecture 

Multi-Layer Single Unit Nearest Nbr 
2-Value 96.3% 3 

79.9%        5 
96.7% 3 
84.6%     13 

65.1%         1 

(first component) 
91.6% 21 
85.1%     114 

93.3% 15 
85.1%     94 

97.4%     208 

v2 
(second component) 

91.4% 4 
65.1%        5 

92.3% 3 
68.2%      5 

53.9%         1 

Mn 
(Std. Mahalanobis) 

84.1% 9 
42.6%        5 

93.0% 13 
58.6%     11 

71.8%        5 

Table 1: Summary of performance figures from Experiments 1 (Classifier Architecture) and 2 (Distance Metric). Detection 
rates versus number of false positives for different classifier architectures and distance metrics. The four numbers for each 
entry are: Top Left: detection rate for first database. Top Right: number of false positives for first database. Bottom 
Left: detection rate for second database. Bottom Right: number of false positives for second database. Notice that 
we did not test the nearest neighbor architecture on the second database. This is because the test results from the first 
database already show that the nearest neighbor classifier is significantly inferior to the other 2 classifiers in this problem 
domain. 

canonical face model, and hence the dimensionality 
of the feature distance vector the matching stage 
computes. We obtain the 12 "face" prototypes 
by performing elliptical k-means clustering with 12 
centers on our enlarged canonical face database of 
4150 patterns (see Section 3.3). The matching stage 
computes the same 2-Value distance metric that our 
original system uses; i.e., for each prototype clus- 
ter, V\ is the normalized Mahalanobis distance in 
a subspace of the 75 largest eigenvectors, and Vi 
is the Euclidean distance between the test pattern 
and the subspace. 

2. A system with only 6 "face" prototypes. In 
this system, we preserve only the "face" prototypes 
from the original system. The matching stage com- 
putes the same 2-Value distances between each test 
pattern and the 6 "face" centroids. Notice that the 
resulting feature distance vectors have only 6 pairs 
of values. 

We generate two sets of performance statistics for each 
the two new systems above. For the first set, we use a 
trained multi-layer perceptron net with 12 hidden units 
to classify new patterns from their feature distance vec- 
tors. For the second set, we replace the multi-layer per- 
ceptron net classifier with a trained single perceptron 
unit classifier. 

6.3     Performance Figures and Interpretation 

Table 1 summarizes the performance statistics for 
both the classifier architecture and distance metric ex- 
periments, while Table 2 shows how the system performs 
with and without "Non-Face" model prototypes. 

Classifier Architecture The horizontal rows of Ta- 
ble 1 show how different classifier architectures affect 
the system's face detection rate versus false alarm in- 
stances. Quantitatively, the two network-based classi- 
fiers have very similar performance figures, while the 
nearest neighbor classifier produces rather different per- 
formance statistics. Depending on the distance metric 
being used, the nearest neighbor classifier has either a 
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somewhat higher face detection rate with a lot more false 
alarms, or a much lower face detection rate with some- 
what fewer false alarms than the other two classifiers. 
Because we do not have a reasonable measure of relative 
importance between face detection rate and number of 
false alarms, we empirically rank the performance fig- 
ures by visually examining their corresponding output 
images. In doing so, we find that the two network-based 
classifiers produce results that are a lot more visually 
appealing than the nearest neighbor classifier. 

It is interesting that the two network-based classifiers 
we tested produce very similar performance statistics, 
especially on the first test database. The similarity here 
suggests that the system's performance depends most 
critically on the classifier type, i.e. a perceptron net, 
and not on the specific net architecture. It is also some- 
what surprising that one can get very encouraging per- 
formance figures even with an extremely simple single 
perceptron unit classifier, especially when using our 2- 
Value distance metric to compute feature distance vec- 
tors. This suggests that the distance vectors we get with 
our 2-Value distance metric are a linearly very separable 
set of features for "face" and "non-face" patterns. 

Why does the nearest neighbor classifier have a much 
lower face detection rate than the other two network- 
based classifiers when used with our 2-Value distance 
metric? We believe this has to do with the much larger 
number of non-face patterns in our training database 
than face patterns (43166 non-face patterns versus 4150 
face patterns). The good performance figures from the 
single perceptron classifier suggest that the two pattern 
classes are linearly highly separable in our 24 value fea- 
ture distance vector space. Assuming that roughly the 
same fraction of face and non-face patterns lie along 
the linear class boundary, we get a boundary population 
with 10 times more non-face samples than face samples. 
A new face pattern near the class boundary will there- 
fore have a very high chance of lying nearer a non-face 
sample than a face sample, and hence be wrongly clas- 
sified by a nearest neighbor scheme. Notice that despite 
the huge difference in number of face and non-face train- 



Classifier 
Architecture 

Composition of Prototypes 
6 Face k, 

6 Non-Face 
12 Face 6 Face 

Multi-layer Perceptron 96.3%       3 
79.9%       5 

85.3% 21 
69.6%    74 

59.7% 17 
60.9%    41 

Single Perceptron 96.7%       3 
84.6%     13 

52.1% 6 
49.7%     16 

66.6% 25 
55.4%    56 

Table 2: Summary of performance figures for Experiment 3 ("Non-Face" Prototypes). Detection rates versus number of 
false positives for different classifier architectures and composition of prototypes in distribution-based model. The four 
numbers for each entry are: Top Left: detection rate for first database. Top Right: number of false positives for first 
database. Bottom Left: detection rate for second database. Bottom Right: number of false positives for second 
database. ^___  

ing patterns, a perceptron classifier can still locate the 
face vs. non-face class boundary accurately if the two 
pattern classes are indeed linearly highly separable, and 
hence still produce good classification results. 

The Distance Metric The vertical columns of Ta- 
ble 1 show how the system's performance changes with 
different distance metrics in the pattern matching stage. 
Both the multi-layer perceptron net and single per- 
ceptron classifier systems produce better performance 
statistics with our 2-Value distance metric than with the 
other three distance measures, especially on images from 
the second test database. The observation should not at 
all be surprising. Our 2-Value distance metric consists 
of both V\ and V2, two of the three other distance mea- 
sures we are comparing against. A system that uses our 
2-Value distance should therefore produce performance 
figures that are at least as good as a similar system that 
uses either V\ or X>2 only. In fact, since our 2-Value 
distance systems actually produce better classification 
results than the systems using only V\ or V2, one can 
further affirm that the two components V\ and T>2 do 
not mutually contain totally redundant information. 

Our 2-Value distance metric should also produce clas- 
sification results that are at least as good as those ob- 
tained with a Mahalanobis distance metric. This is be- 
cause both metrics treat and quantify distance in essen- 
tially the same way — as a "difference" notion between 
a test pattern and a local data distribution. Further- 
more, the "difference" notions they use are based on 
two very similar Gaussian generative models of the local 
data distribution. In our experiments with perceptron- 
based classifiers, the 2-Value distance metric actually 
out-performs the Mahalanobis distance metric consis- 
tently. We suggest two possible reasons for this differ- 
ence in performance: (1) As discussed in Section 4.5, we 
have too few sample points in our local data distribution 
to accurately recover a full Gaussian covariance matrix 
for computing Mahalanobis distances. By naively trying 
to do so, we get a distance measure that poorly reflects 
the "difference" notion we want to capture. (2) The lo- 
cal data distribution we are trying to model may not be 
truly Gaussian. Our 2-Value distance metric provides 
an additional degree of freedom that better describes a 
test pattern's location relative to the local non-Gaussian 
data distribution. 

It is interesting that even a network-based classifier 
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with a "partial" T>2 distance metric almost always out- 
performs a similar classifier with a "complete" Maha- 
lanobis distance metric. At first glance, the observation 
can be surprising because unlike the "complete" Maha- 
lanobis distance, the V2 metric alone does not account 
for pattern differences in certain image vector space di- 
rections. More specifically, the V2 metric only measures 
a pattern's Euclidean distance from a cluster's 75 most 
significant eigenvector subspace, and does not account 
for pattern differences within the subspace. We believe 
this comparison truly reveals that without sufficient data 
to accurately recover a full Gaussian covariance matrix, 
the resulting Mahalanobis distance can be a very poor 
notion of "pattern difference". 

"Non-Face" Prototypes Table 2 summarizes the 
performance statistics for comparing systems with and 
without "non-face" prototypes. As expected, the sys- 
tems with "non-face" prototypes clearly out-perform 
those without "non-face" prototypes. Our results sug- 
gest that not only are the "non-face" prototypes an ad- 
ditional set of features for face detection, they are in fact 
a very discriminative set of additional features. 

7    Conclusion 

We have successfully developed a system for finding un- 
occluded vertical frontal views of human faces in images. 
The approach is view based. It models the distribution of 
face patterns by means of a few prototype clusters, and 
learns from examples a set of distance parameters for 
distinguishing between "face" and "non-face" test pat- 
terns. We stress again, however, that our ultimate goal 
is to develop our face detection approach into a general 
methodology for taking on feature detection and pattern 
recognition tasks in multiple domains. 

We plan to further our work in the following two di- 
rections. First, we would like to demonstrate the full 
power of our face detection approach by building a more 
comprehensive face detection system. One obvious ex- 
tension would be to have the system detect faces over a 
wider range of poses instead of just near-frontal views. 
We believe that our current approach can in fact be used 
without modification to perform this new task. All we 
need is a means of obtaining or artificially generating a 
sufficiently large example database of human faces at the 
different poses [1]. 



Second, we would like to demonstrate the versatility 
and generality of our approach by building a few more 
feature and pattern detection applications in other prob- 
lem domains. Some possibilities include industrial in- 
spection applications for detecting defects in manufac- 
tured products and terrain feature classification appli- 
cations for SAR imagery. We believe that the key to 
making this work would be to find appropriate trans- 
formation spaces for each new task, wherein the target 
pattern classes would be reasonably stable. 
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